Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Int J Nanomedicine ; 19: 3031-3044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562612

RESUMO

Purpose: Peripheral nerve damage lacks an appropriate diagnosis consistent with the patient's symptoms, despite expensive magnetic resonance imaging or electrodiagnostic assessments, which cause discomfort. Ultrasonography is valuable for diagnosing and treating nerve lesions; however, it is unsuitable for detecting small lesions. Poly(vanillin-oxalate) (PVO) nanoparticles are prepared from vanillin, a phytochemical with antioxidant and anti-inflammatory properties. Previously, PVO nanoparticles were cleaved by H2O2 to release vanillin, exert therapeutic efficacy, and generate CO2 to increase ultrasound contrast. However, the role of PVO nanoparticles in peripheral nerve lesion models is still unknown. Herein, we aimed to determine whether PVO nanoparticles can function as contrast and therapeutic agents for nerve lesions. Methods: To induce sciatic neuritis, rats were administered a perineural injection of carrageenan using a nerve stimulator under ultrasonographic guidance, and PVO nanoparticles were injected perineurally to evaluate ultrasonographic contrast and therapeutic effects. Reverse transcription-quantitative PCR was performed to detect mRNA levels of pro-inflammatory cytokines, ie, tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2. Results: In the rat model of sciatic neuritis, PVO nanoparticles generated CO2 bubbles to increase ultrasonographic contrast, and a single perineural injection of PVO nanoparticles suppressed the expression of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2, reduced the expression of F4/80, and increased the expression of GAP43. Conclusion: The results of the current study suggest that PVO nanoparticles could be developed as ultrasonographic contrast agents and therapeutic agents for nerve lesions.


Assuntos
Benzaldeídos , Nanopartículas , Neuropatia Ciática , Ratos , Humanos , Animais , Peróxido de Hidrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Dióxido de Carbono , Ciclo-Oxigenase 2/metabolismo , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Nanopartículas/química , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/metabolismo
2.
Eur Rev Med Pharmacol Sci ; 28(7): 2654-2661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639504

RESUMO

OBJECTIVE: This study aimed to explore the effect of flipped venous catheters combined with spinal cord electrical stimulation on functional recovery in patients with sciatic nerve injury. PATIENTS AND METHODS: 160 patients with hip dislocation and sciatic nerve injury were divided into conventional release and flipped catheter + electrical stimulation groups according to the treatment methods (n=80). Motor nerve conduction velocity (MCV) and lower limb motor function were compared. Serum neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were compared. The frequency of complications and quality of life were also compared. RESULTS: The MCV levels of the common peroneal nerve and tibial nerve in the flipped catheter + electrical stimulation group were greater than the conventional lysis group (p<0.05). After treatment, the lower extremity motor score (LMEs) in the flipped catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). The serum levels of BDNF and NGF in the flip catheter + electrical stimulation group were higher than the conventional lysis group (p<0.05). The complication rate in the flipped catheter + electrical stimulation group was lower than in the conventional release group (6.25% vs. 16.25%, p<0.05). The quality-of-life score in the flip catheter + electrical stimulation group was greater than the conventional lysis group (p<0.05). CONCLUSIONS: The flipped venous catheter combined with spinal cord electrical stimulation can improve nerve conduction velocity, lower limb motor function, serum BDNF and NGF levels, reduce complications, and help improve the quality of life of sufferers with sciatic nerve injury. Chictr.org.cn ID: ChiCTR2400080984.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuropatia Ciática , Ratos , Animais , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Neural/metabolismo , Qualidade de Vida , Neuropatia Ciática/metabolismo , Neuropatia Ciática/terapia , Medula Espinal/metabolismo , Nervo Isquiático , Cateteres , Estimulação Elétrica/métodos
3.
Histochem Cell Biol ; 161(2): 145-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855874

RESUMO

Peripheral nerve injuries lead to significant changes in the dorsal root ganglia, where the cell bodies of the damaged axons are located. The sensory neurons and the surrounding satellite cells rearrange the composition of the intracellular organelles to enhance their plasticity for adaptation to changing conditions and response to injury. Meanwhile, satellite cells acquire phagocytic properties and work with macrophages to eliminate degenerated neurons. These structural and functional changes are not identical in all injury types. Understanding the cellular response, which varies according to the type of injury involved, is essential in determining the optimal method of treatment. In this research, we investigated the numerical and morphological changes in primary sensory neurons and satellite cells in the dorsal root ganglion 30 days following chronic compression, crush, and transection injuries using stereology, high-resolution light microscopy, immunohistochemistry, and behavioral analysis techniques. Electron microscopic methods were employed to evaluate fine structural alterations in cells. Stereological evaluations revealed no statistically significant difference in terms of mean sensory neuron numbers (p > 0.05), although a significant decrease was observed in sensory neuron volumes in the transection and crush injury groups (p < 0.05). Active caspase-3 immunopositivity increased in the injury groups compared to the sham group (p < 0.05). While crush injury led to desensitization, chronic compression injury caused thermal hyperalgesia. Macrophage infiltrations were observed in all injury types. Electron microscopic results revealed that the chromatolysis response was triggered in the sensory neuron bodies from the transection injury group. An increase in organelle density was observed in the perikaryon of sensory neurons after crush-type injury. This indicates the presence of a more active regeneration process in crush-type injury than in other types. The effect of chronic compression injury is more devastating than that of crush-type injury, and the edema caused by compression significantly inhibits the regeneration process.


Assuntos
Lesões por Esmagamento , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Gânglios Espinais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/metabolismo , Nervo Isquiático/lesões , Lesões por Esmagamento/metabolismo
4.
Mol Neurobiol ; 61(2): 935-949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672149

RESUMO

Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduction in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the proliferation activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially influencing the neurite growth of neurons.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , RNA Longo não Codificante , Neuropatia Ciática , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/metabolismo
5.
Neurosci Lett ; 817: 137514, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37848102

RESUMO

Cyclin-dependent kinase 5 regulatory subunit 1 (CDK5R1) is necessary for central nervous system development and neuronal migration. At present, there are few reports about the role of CDK5R1 in peripheral nerve injury, and these need to be further explored. The CCK-8 and EdU assay was performed to examine cell proliferation. The migration ability of Schwann cells was tested by the cell scratch test. The apoptosis of Schwann cells was detected by flow cytometry. Sciatic nerve injury model in rats was established by crush injury. The sciatic function index (SFI) and the paw withdrawal mechanical threshold (PWMT) were measured at different time points. The results revealed that overexpression of CDK5R1 promoted the proliferation and migration of Schwann cells, and inhibited the apoptosis. Further studies found that pcDNA3.1-CDK5R1 significantly upregulated the expression of CDK5, BDNF and TrkB. More importantly, CDK5R1 promoted the recovery of nerve injury in rats. In addition, the CDK5 mediated BDNF/TrkB pathway was involved in the molecular mechanism of CDK5R1 on Schwann cells. It is suggested that the mechanism by which CDK5R1 promotes functional recovery after sciatic nerve injury is by CDK5 mediated activation of BDNF/TrkB signaling pathways.


Assuntos
Traumatismos dos Nervos Periféricos , Fosfotransferases , Neuropatia Ciática , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células , Quinase 5 Dependente de Ciclina/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/lesões , Neuropatia Ciática/metabolismo , Fosfotransferases/metabolismo
6.
J Chem Neuroanat ; 133: 102327, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37634701

RESUMO

Neuropathic pain is a common symptom experienced by most clinical diseases at different levels, and its treatment has always been a clinical difficulty. Therefore, it is particularly important to explore new and effective treatment methods. The role of olfactory ensheathing cells (OECs) in nerve injury and pain is recognized by different studies. Our previous study found that transplantation of OECs alleviated hyperalgesia in rats. However, single-cell transplantation lacks medium adhesion and support, and exerts limited analgesic effect. Therefore, on the basis of the previous study, this study investigated the effect of pain relief by co-transplanting OECs with chitosan (CS) (a biological tissue engineering material, as OECs were transplanted into the host medium) to the injured sciatic nerve. The results showed that the pain threshold of sciatic nerve injury of rats was significantly reduced, and the expression level of P2×4 receptor in the spinal cord was significantly increased. While olfactory ensheathing cells combined with chitosan (OECs+CS) transplantation could significantly relieve pain, and the analgesic effect was stronger than that of OECs transplantation alone. OECs+CS transplantation promoted the formation of sciatic nerve remyelination, improved the changes of demyelination, and promoted the repair of sciatic nerve injury more significantly. In addition, the effect of OECs+CS to down-regulate the expression of P2×4 receptor was significantly stronger than that of OECs transplantation, and exerted a better analgesic effect. These data reveal that OECs+CS have a better analgesic effect in relieving neuropathic pain induced by sciatic nerve injury, and provide a new therapeutic strategy for pain treatment.


Assuntos
Quitosana , Neuralgia , Neuropatia Ciática , Traumatismos da Medula Espinal , Ratos , Animais , Materiais Biocompatíveis/metabolismo , Ratos Sprague-Dawley , Quitosana/farmacologia , Quitosana/uso terapêutico , Quitosana/metabolismo , Traumatismos da Medula Espinal/metabolismo , Neuropatia Ciática/metabolismo , Nervo Isquiático/fisiologia , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo , Bulbo Olfatório/metabolismo , Regeneração Nervosa/fisiologia
7.
Brain Res ; 1819: 148542, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604315

RESUMO

Paradoxically, while acute pain leads to transiently elevated corticosterone, chronic pain does not result in persistently elevated corticosterone. In the sciatic nerve chronic constriction injury (CCI) model of chronic pain, we have shown that the same nerve injury produces a range of behavioural outcomes, each associated with distinctive adaptations to the HPA-axis to achieve stable plasma corticosterone levels. We also demonstrated that CRF and GR expression in the paraventricular hypothalamus (PVH) was increased in rats that showed persistent changes to their social behaviours during Resident-Intruder testing ('Persistent Effect' rats) when compared to rats that showed no behavioural changes ('No Effect' rats). In this study, we investigated whether these changes were driven in part by altered sensitivity of the brainstem catecholaminergic pathways (known to regulate the PVH) to glucocorticoids. GR expression in adrenergic (C1,C2) and noradrenergic (A1,A2) cells was determined using immunohistochemistry in behaviourally tested CCI rats and in uninjured controls. We found no differences between Persistent Effect and No Effect rats in (1) the glucocorticoid sensitivity of these cells, or (2) the numbers of adrenergic and noradrenergic cells in each region. However, we discovered an overall reduction in GR expression in the non-catecholaminergic cells of these regions in both experimental groups when compared to uninjured controls, most likely attributable to the repeated Resident-Intruder testing. Taken together, these data suggest strongly that brainstem mechanisms are unlikely to play a key role in the rebalancing of the HPA-axis triggered by CCI, increasing the probability that these changes are driven by supra-hypothalamic regions.


Assuntos
Dor Crônica , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Ratos Sprague-Dawley , Corticosterona , Interação Social , Comportamento Animal/fisiologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/lesões , Adrenérgicos
8.
Neurosci Lett ; 814: 137419, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37558176

RESUMO

During the onset of neuropathic pain from a variety of etiologies, nociceptors become hypersensitized, releasing neurotransmitters and other factors from centrally-projecting nerve terminals within the dorsal spinal cord. Consequently, glial cells (astrocytes and microglia) in the spinal cord are activated and mediate the release of proinflammatory cytokines that act to enhance pain transmission and sensitize mechanical non-nociceptive fibers which ultimately results in light touch hypersensitivity, clinically observed as allodynia. Pramipexole, a D2/D3 preferring agonist, is FDA-approved for the treatment of Parkinson's disease and demonstrates efficacy in animal models of inflammatory pain. The clinical-stage investigational drug, R(+) enantiomer of pramipexole, dexpramipexole, is virtually devoid of D2/D3 agonist actions and is efficacious in animal models of inflammatory and neuropathic pain. The current experiments focus on the application of a mouse model of sciatic nerve neuropathy, chronic constriction injury (CCI), that leads to allodynia and is previously characterized to generate spinal glial activation with consequent release IL-1ß. We hypothesized that both pramipexole and dexpramipexole reverse CCI-induced chronic neuropathy in mice, and in human monocyte cell culture studies (THP-1 cells), pramipexole prevents IL-1ß production. Additionally, we hypothesized that in rat primary splenocyte culture, dexpramixole increases mRNA for the anti-inflammatory and pleiotropic cytokine, interleukin-10 (IL-10). Results show that following intravenous pramipexole or dexpramipexole, a profound decrease in allodynia was observed by 1 hr, with allodynia returning 24 hr post-injection. Pramipexole significantly blunted IL-1ß protein production from stimulated human monocytes and dexpramipexole induced elevated IL-10 mRNA expression from rat splenocytes. The data support that clinically-approved compounds like pramipexole and dexpramipexole support their application as anti-inflammatory agents to mitigate chronic neuropathy, and provide a blueprint for future, multifaceted approaches for opioid-independent neuropathic pain treatment.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Camundongos , Ratos , Humanos , Animais , Interleucina-10/metabolismo , Hiperalgesia/metabolismo , Pramipexol , Drogas em Investigação/metabolismo , Drogas em Investigação/uso terapêutico , Citocinas/metabolismo , Neuralgia/metabolismo , Neuropatia Ciática/metabolismo , Medula Espinal/metabolismo , Nervo Isquiático/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Técnicas de Cultura de Células
9.
Biochem Biophys Res Commun ; 674: 36-43, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393642

RESUMO

Peripheral nerve injuries have common clinical problems that are often accompanied by sensory and motor dysfunction and failure of axonal regeneration. Although various therapeutic approaches have been attempted, full functional recovery and axonal regeneration are rarely achieved in patients. In this study, we investigated the effects of recombinant adeno-associated virus (AAV) of mesencephalic astrocyte-derived neurotrophic factor (AAV-MANF) or placental growth factor (AAV-PlGF) transduced into mesenchymal stem cells (hMSC-MANF and hMSC-PlGF), which were then transplanted using human decellularized nerves (HDN) into sciatic nerve injury model. Our results showed that both AAV-MANF and AAV-PlGF were expressed in MSCs transplanted into the injury site. Behavioral measurements performed 2, 4, 6, 8, and 12 weeks after injury indicated that MANF facilitated the rapid and improved recovery of sensory and motor functions than PlGF. In addition, immunohistochemical analysis was used to quantitatively analyze the myelination of neurofilaments, Schwann cells, and regrowth axons. Both hMSC-MANF and hMSC-PlGF increased axon numbers and immunoreactive areas of axons and Schwann cells compared with the hMSC-GFP group. However, hMSC-MANF significantly improved the thickness of axons and Schwann cells compared with hMSC-PlGF. G-ratio analysis also showed a marked increase in axon myelination in axons thicker than 2.0 µm treated with MANF than that treated with PlGF. Our study suggests that transplantation of hMSC transduced with AAV-MANF has a potential to provide a novel and efficient strategy for promoting functional recovery and axonal regeneration in peripheral nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Humanos , Feminino , Traumatismos dos Nervos Periféricos/metabolismo , Recuperação de Função Fisiológica/fisiologia , Astrócitos/metabolismo , Regeneração Nervosa/fisiologia , Fator de Crescimento Placentário/metabolismo , Neuropatia Ciática/metabolismo , Axônios/metabolismo , Fatores de Crescimento Neural/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
10.
Eur Rev Med Pharmacol Sci ; 27(12): 5841-5853, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37401321

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of cinnamon bark essential oil (CBO) on analgesia, motor activity, balance, and coordination in rats with sciatic nerve damage. MATERIALS AND METHODS: Rats were divided into three groups as simply randomized. The right sciatic nerve (RSN) of the Sham group was explored. Only vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury (SNI) group was explored. Damage was created by unilateral clamping, and vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury+cinnamon bark essential oil (SNI+CBO) group was explored. SNI was created by unilateral clamping and CBO was applied for 28 days. In the experiment study, motor activity, balance, and coordination measurements were made with rotarod and accelerod tests. A hot plate test was performed for analgesia measurements. Histopathology studies were carried out with the sciatic nerve tissues. RESULTS: In the rotarod test, there was a statistically significant difference between the SNI group and the SNI+CBO group (p<0.05). According to the accelerod test findings, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups. In the hot plate test, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups (p<0.05). In comparison to the Sham group and the SNI group, the SNI+CBO group was shown to have the greatest expression level of vimentin. CONCLUSIONS: We have concluded that CBO can be used as an adjuvant treatment in cases of SNI, increased pain, nociception, impaired balance, motor activity, and coordination. Our results will be supported by further studies.


Assuntos
Óleos Voláteis , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Nervo Isquiático , Cinnamomum zeylanicum , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Dor/patologia , Óleos Voláteis/farmacologia
11.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047247

RESUMO

N-docosahexaenoylethanolamine (DHEA), or synaptamide, is an endogenous metabolite of docosahexaenoic acid (DHA) that exhibits synaptogenic and neurogenic effects. In our previous studies, synaptamide administration inhibited the neuropathic pain-like behavior and reduced inflammation in the central nervous system following sciatic nerve injury. In the present study, we examine the effect of synaptamide on the peripheral nervous system in a neuropathic pain condition. The dynamics of ionized calcium-binding adapter molecule 1 (iba-1), CD68, CD163, myelin basic protein, and the production of interleukin 1ß and 6 within the sciatic nerve, as well as the neuro-glial index and the activity of iba-1, CD163, glial fibrillary acidic protein (GFAP), neuronal NO synthase (nNOS), substance P (SP), activating transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), are studied. According to our results, synaptamide treatment (4 mg/kg/day) (1) decreases the weight-bearing deficit after nerve trauma; (2) enhances the remyelination process in the sciatic nerve; (3) shows anti-inflammatory properties in the peripheral nervous system; (4) decreases the neuro-glial index and GFAP immunoreactivity in the DRG; (5) inhibits nNOS- and SP-ergic activity in the DRG, which might contribute to neuropathic pain attenuation. In general, the current study demonstrates the complex effect of synaptamide on nerve injury, which indicates its high potential for neuropathic pain management.


Assuntos
Neuralgia , Neuropatia Ciática , Humanos , Etanolaminas/farmacologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/metabolismo , Anti-Inflamatórios/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Hiperalgesia/metabolismo
12.
Glia ; 71(7): 1715-1728, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971019

RESUMO

Our previous studies indicated that RhoA knockdown or inhibition could alleviate the proliferation, migration, and differentiation of Schwann cells. However, the role of RhoA in Schwann cells during nerve injury and repair is still unknown. Herein, we developed two lines of Schwann cells conditional RhoA knockout (cKO) mice by breeding RhoAflox / flox mice with PlpCre -ERT2 or DhhCre mice. Our results indicate that RhoA cKO in Schwann cells accelerates axonal regrowth and remyelination after sciatic nerve injury, which enhances the recovery of nerve conduction and hindlimb gait, and alleviates the amyotrophy in gastrocnemius muscle. Mechanistic studies in both in vivo and in vitro models revealed that RhoA cKO could facilitate Schwann cell dedifferentiation via JNK pathway. Schwann cell dedifferentiation subsequently promotes Wallerian degeneration by enhancing phagocytosis and myelinophagy, as well as stimulating the production of neurotrophins (NT-3, NGF, BDNF, and GDNF). These findings shed light on the role of RhoA in Schwann cells during nerve injury and repair, indicating that cell type-specific RhoA targeting could serve as a promising molecular therapeutic strategy for peripheral nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Camundongos , Animais , Desdiferenciação Celular , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo , Neuropatia Ciática/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo
13.
J Neurochem ; 165(6): 842-859, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971732

RESUMO

Schwann cells play an essential role in peripheral nerve regeneration by generating a favorable microenvironment. Gastric inhibitory peptide/gastric inhibitory peptide receptor (GIP/GIPR) axis deficiency leads to failure of sciatic nerve repair. However, the underlying mechanism remains elusive. In this study, we surprisingly found that GIP treatment significantly enhances the migration of Schwann cells and the formation of Schwann cell cords during recovery from sciatic nerve injury in rats. We further revealed that GIP and GIPR levels in Schwann cells were low under normal conditions, and significantly increased after injury demonstrated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Wound healing and Transwell assays showed that GIP stimulation and GIPR silencing could affect Schwann cell migration. In vitro and in vivo mechanistic studies based on interference experiment revealed that GIP/GIPR might promote mechanistic target of rapamycin complex 2 (mTORC2) activity, thus facilitating cell migration; Rap1 activation might be involved in this process. Finally, we retrieved the stimulatory factors responsible for GIPR induction after injury. The results indicate that sonic hedgehog (SHH) is a potential candidate whose expression increased upon injury. Luciferase and chromatin immunoprecipitation (ChIP) assays showed that Gli3, the target transcription factor of the SHH pathway, dramatically augmented GIPR expression. Additionally, in vivo inhibition of SHH could effectively reduce GIPR expression after sciatic nerve injury. Collectively, our study reveals the importance of GIP/GIPR signaling in Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Proteínas Hedgehog/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Transdução de Sinais/fisiologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/lesões , Receptores de Peptídeos/metabolismo , Células de Schwann/metabolismo
14.
Neurochem Res ; 48(6): 1945-1957, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36763313

RESUMO

The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.


Assuntos
Neuralgia , Neuropatia Ciática , Animais , Ratos , Constrição , Histonas/metabolismo , Hiperalgesia/metabolismo , Lisina/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo , Estudo de Associação Genômica Ampla
15.
Neurochem Res ; 48(7): 2161-2174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36828984

RESUMO

This study was designed to investigate the analgesic effect of perineural injection of BoNT/A on neuropathic pain induced by sciatic nerve chronic constriction injury (CCI) and possible mechanisms. SD rats were randomly divided into Sham group, CCI group and BoNT/A group. Paw mechanical withdrawal threshold (pMWT) and paw thermal withdrawal latency (pTWL) of each group were detected at different time points after surgery. The expression of myelin markers, autophagy markers and NLRP3 inflammasome-related molecules in injured sciatic nerves were examined at 12 days after surgery. Moreover, C-fiber evoked potential in spinal dorsal horn was recorded. The expression of SNAP-25, neuroinflammation and synaptic plasticity in spinal dorsal horn of each group were examined. Then rats treated with BoNT/A were randomly divided into DMSO group and Wnt agonist group to further explore the regulatory effect of BoNT/A on Wnt pathway. We found that pMWT and pTWL of ipsilateral paw were significantly decreased in CCI group compared with Sham group, which could be improved by perineural injection of BoNT/A at days 7, 9 and 12 after surgery. The peripheral analgesic mechanisms of perineural injection of BoNT/A might be related to the protective effect on myelin sheath by inhibiting NLRP3 inflammasome and promoting autophagy flow, while the central analgesic mechanisms might be associated with inhibition of neuroinflammation and synaptic plasticity in spinal dorsal horn due to inhibiting SNAP-25 and Wnt pathway. As a new route of administration, perineural injection of BoNT/A can relieve CCI induced neuropathic pain probably via both peripheral and central analgesic mechanisms.


Assuntos
Neuralgia , Neuropatia Ciática , Ratos , Animais , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Constrição , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nervo Isquiático/lesões , Analgésicos/farmacologia , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia
16.
Exp Neurol ; 362: 114327, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682399

RESUMO

The immune system has garnered attention for its role in peripheral nerve regeneration, particularly as it pertains to regeneration across segmental injuries. Previous work demonstrated that eosinophils are recruited to regenerating nerve and express interleukin-4, amongst potential cytokines. These results suggest a direct role for eosinophils in promoting nerve regeneration. Therefore, we further considered eosinophils roles in nerve regeneration using a segmental nerve injury and Gata1 knockout (KO) mice, which are severely eosinophil deficient, compared to wild-type BALB/c mice (WT). Mice receiving a sciatic nerve gap injury demonstrated distinct cytokine expression and leukocytes within regenerating nerve. Compared to controls, Gata1 KO regenerated nerves contained decreased expression of type 2 cytokines, including Il-5 and Il-13, and decreased recruitment of eosinophils and macrophages. At this early time point during ongoing regeneration, the macrophages within Gata1 KO nerves also demonstrated significantly less M2 polarization compared to controls. Subsequently, motor and sensory axon regeneration across the gap injury was decreased in Gata1 KO compared to WT during ongoing nerve regeneration. Over longer observation to allow for more complete nerve regeneration, behavioral recovery measured by grid-walk assessment was not different comparing groups but modestly delayed in Gata1 KO compared to WT. The extent of final axon regeneration was not different amongst groups. Our data provide additional evidence suggesting eosinophils contribute to nerve regeneration across a nerve gap injury, but are not essential to regeneration in this context. Our evidence also suggests eosinophils may regulate cytokines that promote distinct macrophage phenotypes and axon regeneration.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Camundongos , Animais , Citocinas/metabolismo , Eosinófilos/metabolismo , Nervos Periféricos/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Neuropatia Ciática/metabolismo , Axônios/fisiologia , Nervo Isquiático/lesões
17.
Turk Neurosurg ; 33(1): 18-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35416257

RESUMO

AIM: To investigate the changes in type II neuregulin-1 (NRG-1) during the regeneration process following autologous sciatic nerve transplantation in rats. MATERIAL AND METHODS: In total, 40 healthy male Sprague-Dawley (SD) rats of clean grade with body weights between 250 g and 300 g were randomly divided into an experimental and control group, with 20 rats per group. Five time points were set, including the 3 < sup > rd < /sup > , 7 < sup > th < /sup > , 14 < sup > th < /sup > , 21 < sup > st < /sup > and 28 < sup > th < /sup > days after surgery. In the experimental group, reversed autologous transplantation of the sciatic nerve was performed, while in the control group, the sciatic nerve was simply exposed without autologous transplantation. At the different time points, changes in the rat footprints were observed, the sciatic functional index (SFI) was calculated, changes in the regeneration of the myelin sheath at the nerve end after transplantation were observed by transmission electron microscopy, changes in type II NRG-1 protein expression were detected by a western blot analysis, and changes in type II NRG-1 mRNA expression were detected by real-time PCR. RESULTS: The SFI in the experimental group was lower than that in the control group at all time points after surgery, and the SFI in the experimental group gradually increased; these differences were statistically significant (p < 0.05). The expression of type II NRG-1 protein in the experimental group was significantly increased on the 3rd day after nerve transplantation and peaked on the 7 < sup > th < /sup > day, which continued until the 28 < sup > th < /sup > day after surgery, indicating a significant difference from the control group (p < 0.01). NRG-1 mRNA expression was markedly increased on the 7th day after nerve transplantation, further increased, and peaked on the 14 < sup > th < /sup > day (p < 0.01). The area of medullated nerve fibers (?m2) in the experimental group significantly differed from that in the control group on the 7 < sup > th < /sup > , 14 < sup > th < /sup > , 21 < sup > st < /sup > and 28 < sup > th < /sup > days (p < 0.01), and the diameters of the axons in the experimental group notably differed from those in the control group on the 7 < sup > th < /sup > , 14 < sup > th < /sup > and 21 < sup > st < /sup > days (p < 0.01). CONCLUSION: Type II NRG-1 expression peaked between the 3 < sup > rd < /sup > day and 14 < sup > th < /sup > day after autologous nerve transplantation and is likely involved in the regulation of myelin sheath regeneration during this period.


Assuntos
Neuropatia Ciática , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Neuropatia Ciática/metabolismo , Transplante Autólogo , Neuregulina-1/metabolismo , Nervo Isquiático/metabolismo , RNA Mensageiro , Regeneração Nervosa/fisiologia
18.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555183

RESUMO

Neuropathic pain is a condition affecting the quality of life of a substantial part of the population, but biomarkers and treatment options are still limited. While this type of pain is caused by nerve damage, in which lipids play key roles, lipidome alterations related to nerve injury remain poorly studied. Here, we assessed blood lipidome alterations in a common animal model, the rat sciatic nerve crush injury. We analyzed alterations in blood lipid abundances between seven rats with nerve injury (NI) and eight control (CL) rats in a time-course experiment. For these rats, abundances of 377 blood lipid species were assessed at three distinct time points: immediately after, two weeks, and five weeks post injury. Although we did not detect significant differences between NI and CL at the first two time points, 106 lipids were significantly altered in NI five weeks post injury. At this time point, we found increased levels of triglycerides (TGs) and lipids containing esterified palmitic acid (16:0) in the blood plasma of NI animals. Lipids containing arachidonic acid (20:4), by contrast, were significantly decreased after injury, aligning with the crucial role of arachidonic acid reported for NI. Taken together, these results indicate delayed systematic alterations in fatty acid metabolism after nerve injury, potentially reflecting nerve tissue restoration dynamics.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Lipidômica , Ácido Araquidônico/metabolismo , Qualidade de Vida , Neuropatia Ciática/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo , Plasma/metabolismo
19.
J Neural Eng ; 19(6)2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36317259

RESUMO

Objective.Acellular nerve allograft (ANA) is an effective surgical approach used to bridge the sciatic nerve gap. The molecular regulators of post-surgical recovery are not well-known. Here, we explored the effect of transgenic Schwann cells (SCs) overexpressing POU domain class 6, transcription factor 1 (POU6F1) on sciatic nerve regeneration within ANAs. We explored the functions of POU6F1 in nerve regeneration by using a cell model of H2O2-induced SCs injury and transplanting SCs overexpressing POU6F1 into ANA to repair sciatic nerve gaps.Approach.Using RNA-seq, Protein-Protein Interaction network analysis, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we identified a highly and differentially expressed transcription factor, POU6F1, following ANA treatment of sciatic nerve gap. Expressing a high degree of connectivity, POU6F1 was predicted to play a role in peripheral nervous system myelination.Main results.To test the role of POU6F1 in nerve regeneration after ANA, we infected SCs with adeno-associated virus-POU6F1, demonstrating that POU6F1 overexpression promotes proliferation, anti-apoptosis, and migration of SCsin vitro. We also found that POU6F1 significantly upregulated JNK1/2 and c-Jun phosphorylation and that selective JNK1/2 inhibition attenuated the effects of POU6F1 on proliferation, survival, migration, and JNK1/2 and c-Jun phosphorylation. The direct interaction of POU6F1 and activated JNK1/2 was subsequently confirmed by co-immunoprecipitation. In rat sciatic nerve injury model with a 10 mm gap, we confirmed the pattern of POU6F1 upregulation and co-localization with transplanted SCs. ANAs loaded with POU6F1-overexpressing SCs demonstrated the enhanced survival of transplanted SCs, axonal regeneration, myelination, and functional motor recovery compared to the ANA group loaded by SCs-only in line within vitrofindings.Significance.This study identifies POU6F1 as a novel regulator of post-injury sciatic nerve repair, acting through JNK/c-Jun signaling in SCs to optimize therapeutic outcomes in the ANA surgical approach.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Peróxido de Hidrogênio/metabolismo , Nervo Isquiático/metabolismo , Regeneração Nervosa/genética , Células de Schwann/fisiologia , Neuropatia Ciática/genética , Neuropatia Ciática/cirurgia , Neuropatia Ciática/metabolismo , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/terapia , Aloenxertos/transplante , Fatores de Transcrição/metabolismo
20.
Neuroscience ; 501: 11-24, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870565

RESUMO

We generated a rat model of sciatic nerve crush injury and characterized the effects of curcumin on sciatic nerve recovery by using behavioral experiments, hematoxylin-eosin staining, toluidine blue staining, and immunohistochemical. Proteomic analysis using tandem mass tagging was performed to determine differentially expressed proteins (DEPs), and GO and KEGG pathway analyses of overlapping DEPs was conducted, following which, qPCR, western blotting, and immunofluorescence were further performed to validate the proteins of interest. Finally, a Schwann cell injury model was used to verify the effect of curcumin on potential targets. The rat model was successfully established and curcumin improved the sciatic nerve function index of rats with sciatic nerve injury (SNI) and increased the number and diameter of myelinated axons in the sciatic nerve. In the Sham group versus the Injured group and in the Injured group versus the Curcumin group, we identified a total of 4,175 proteins, of which 953 were DEPs, and 218 were known overlapping DEPs. Ten associated pathways, such as calcium signaling pathway, biosynthesis of antibiotics, and long-term potentiation, were identified. The 218 overlapping DEPs were primarily involved in negative regulation of apoptotic process, biological processes, cytoplasm cellular component, and protein binding molecular function based on GO annotation. Curcumin promoted increased expression of ApoD and inhibited the expression of Cyba in vivo and in vitro. These results indicated that curcumin promoted sciatic nerve repair through regulation of various proteins, targets, and pathways. Cyba and ApoD may be potential targets of curcumin in the treatment of SNI.


Assuntos
Curcumina , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Antibacterianos/farmacologia , Curcumina/farmacologia , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Compressão Nervosa , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Proteômica , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...